Investigation of the Mechanical Properties and Microstructure of the Co40NiCrMo Alloy Used for STACERs and Prepared by the CSPB Process and the Winding and Stabilization Method

Author:

Lu Ruilong1ORCID,Han Jingtao12,Liu Jiawei1,Li Zhanhua3,Zhang Congfa4,Liu Cheng1ORCID,Ma Xiaoyan2

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Guangzhou Sino Precision Steel Tube Industry Research Institute Co., Ltd., Guangzhou 511300, China

3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

4. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Abstract

The Co40NiCrMo alloy, used for STACERs fabricated by the CSPB (compositing stretch and press bending) process (cold forming) and the winding and stabilization (winding and heat treatment) method, was investigated with regard to its tensile property, residual stress, and microstructure. The Co40NiCrMo STACER prepared by the winding and stabilization method was strengthened with lower ductility (tensile strength/elongation: 1562 MPa/5%) compared to that prepared by CSPB (tensile strength/elongation: 1469 MPa/20.4%). The residual stress of the STACER prepared by winding and stabilization (τxy = −137 MPa) showed consistency with that obtained through CSPB (τxy = −131 MPa). Combined with the driving force and pointing accuracy performances, the optimum heat treatment parameters for the winding and stabilization method were determined as 520 °C + 4 h. The HABs in the winding and stabilization STACER (98.3%, of which 69.1% were Σ3 boundaries) were much higher than those in the CSPB STACER (34.6%, of which 19.2% were Σ3 boundaries), while deformation twins and h.c.p ε-platelet networks were present in the CSPB STACER, and many more annealing twins appeared in the winding and stabilization STACER. It was concluded that the strengthening mechanism in the CSPB STACER is the combined action of deformation twins and h.c.p ε-platelet networks, while for the winding and stabilization STACER, annealing twins play the dominant role.

Funder

Foundation of the Institute of Spacecraft System Engineering CAST of China

Natural Science Foundation of Hebei Education Department

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3