A Comparative Study of (Cd,Zn)S Buffer Layers for Cu(In,Ga)Se2 Solar Panels Fabricated by Chemical Bath and Surface Deposition Methods

Author:

Bae DowonORCID

Abstract

Scale-up to large-area Cu(In,Ga)Se2 (CIGS) solar panels is proving to be much more complicated than expected. Particularly, the non-vacuum wet-chemical buffer layer formation step has remained a challenge and has acted as a bottleneck in industrial implementations for mass-production. This technical note deals with the comparative analysis of the impact on different methodologies for the buffer layer formation on CIGS solar panels. Cd(1-x)ZnxS ((Cd,Zn)S) thin films were prepared by chemical bath deposition (CBD), and chemical surface deposition (CSD) for 24-inch (37 cm × 47 cm) patterned CIGS solar panel applications. Buffer layers deposited by the CBD method showed a higher Zn addition level and transmittance than those prepared by the CSD technique due to the predominant cluster-by-cluster growth mechanism, and this induced a difference in the solar cell performance, consequently. The CIGS panels with (Cd,Zn)S buffer layer formed by the CBD method showed a 0.5% point higher conversion efficiency than that of panels with a conventional CdS buffer layer, owing to the increased current density and open-circuit voltage. The samples with the CSD (Cd,Zn)S buffer layer also increased the conversion efficiency with 0.3% point than conventional panels, but mainly due to the increased fill factor.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3