Optimal Histopathological Magnification Factors for Deep Learning-Based Breast Cancer Prediction

Author:

Ashtaiwi AbduladhimORCID

Abstract

Pathologists use histopathology to examine tissues or cells under a microscope to compare healthy and abnormal tissue structures. Differentiating benign from malignant tumors is the most critical aspect of cancer histopathology. Pathologists use a range of magnification factors, including 40x, 100x, 200x, and 400x, to identify abnormal tissue structures. It is a painful process because specialists must spend much time sitting and gazing into the microscope lenses. Hence, pathologists are more likely to make errors due to being overworked or fatigued. Automating cancer detection in histopathology is the best way to mitigate humans’ erroneous diagnostics. Multiple approaches in the literature suggest methods to automate the detection of breast cancer based on the use of histopathological images. This work performs a comprehensive analysis to identify which magnification factors, 40x, 100x, 200x, and 400x, induce higher prediction accuracy. This study found that training Convolutional Neural Networks (CNNs) on 200x and 400x magnification factors increased the prediction accuracy compared to training on 40x and 100x. More specifically, this study finds that the CNN model performs better when trained on 200x than on 400x.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference31 articles.

1. Identification errors in pathology and laboratory medicine

2. National Academy of Medicine https://nam.edu/

3. An efficient breast cancer analysis technique by using a combination of HOG and canny edge detection techniques;Anjum;Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI),2021

4. Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN

5. Automated detection and classification of breast cancer tmour cells using machine learning and deep learning on histopathological images;Yadav;Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT),2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3