Sulfur Species, Bonding Environment, and Metal Mobilization in Mining-Impacted Lake Sediments: Column Experiments Replicating Seasonal Anoxia and Deposition of Algal Detritus

Author:

Langman JeffORCID,Ali JaabirORCID,Child AndrewORCID,Wilhelm FrankORCID,Moberly JamesORCID

Abstract

The oxidation state of sulfur [S] is a primary control on mobility of metals in sediments impacted by legacy mining practices. Coeur d’Alene Lake of northern Idaho, USA, has been impacted by upstream legacy mining practices that deposited an estimated 75 Mt of metal(loid)- and S-rich sediments into the lake. Future lake conditions are expected to include algal blooms, which may alter S and metal remobilization during the seasonal euxinic environment. Cores of the lake sediments were exposed to anoxic and anoxic + algal detritus conditions for eight weeks at 4.5 °C through introduction of a N2 atmosphere and addition of algal detritus. At a location 2.5 cm below the sediment-water interface, anoxic conditions promoted a shift in S species to continually larger concentrations of reduced species and an associated shift in the bonding environment reflective of increased S–metal bonds. Anoxic + algal detritus conditions suppressed the increasing trend of reduced S species and induced greater release of Mn compared to the anoxic-only conditions but did not appear to enhance the release of As, Cd, or Fe. The addition of algal detritus to the sediment-water interface of these Fe- and S-rich sediments enhanced mobilization of Mn likely because of dissimilatory metal reduction where the anaerobic oxidation of the algal detritus stimulated Mn reduction. Results of the study indicate that future metal release from the lake sediments will be altered with the likely deposition of algal detritus, but the effect may not enhance the release of acutely toxic metals, such as As or Cd, or substantially impact Fe cycling in the sediments.

Funder

Idaho Water Resources Research Institute

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3