Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA

Author:

Martin Julianna1,Langman Jeff B.1ORCID

Affiliation:

1. Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID 83844, USA

Abstract

Restoration of open-pit mines may utilize waste rock for landscape reconstruction, which can include the construction of backfill aquifers. Weathering and contaminant transport may be different in backfill aquifers compared to the surrounding aquifer because of newly available mineral surfaces and transportable nano- to micro-scale particles generated during mining. Waste rock from the Cordero Rojo open-pit coal mine in the Powder River Basin was exposed to benchtop leachate experiments for 20 weeks at temperatures of 5 °C and 20 °C. Collected leachate was analyzed for Eh, pH, specific conductance, alkalinity, and cation and anion concentrations as unfiltered and 0.45-μm and 0.2-μm filtered concentrations. During the experiment, leachate Eh and pH substantially varied during the first 55 days, which corresponds to a period of high specific conductance (>1000 µS/cm) and alkalinity (>200 mg/L). Correspondingly, anion and cation concentrations were the largest during this early weathering stage, and the filter fractions indicated multiple forms of transported elements. After this early weathering stage, column leachate evolved towards a weathering equilibrium of neutral, oxidizing, and low solute conditions indicated by positive Eh values, pH near 7, and specific conductance <500 μS/cm. This evolution was reflected in the decline and stabilization or non-detection of metal(loid) concentrations reflective of a shift to primarily bulk aluminosilicate weathering when coal- and salt-associated elements, such as arsenic, cadmium, and selenium, were not detected or at minimal concentrations. Over the course of the experiment, the solute trend of certain elements indicated particular weathering processes—cadmium and nanoparticle transport, selenium and salt dissolution, and arsenic and pyrite oxidation. The mining of overburden formations and use of the waste rock for backfill aquifers as part of landscape reconstruction will create newly available mineral surfaces and nanoparticles that will weather to produce solute concentrations not typically found in groundwater associated with the original overburden.

Funder

U.S. Office of Surface Mining Reclamation and Enforcement

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3