Abstract
The coproduction of lipid and carotenoid by red yeasts in one cycle is more convenient and economical for the industrial sectors, while the kinetics correlation between both products under different culture conditions has been scarcely studied. This study is aiming to correlate the impact of different carbon sources, carbon to phosphorus ratio (C/P), temperature, aeration, pH, and metals on dry cell weight, lipid (GC and fluorescence microscope), and carotenoid (HPLC) production by Rhodotorula glutinis, and applying a novel feeding approach using a 5 L bioreactor to enhance carotenoid and unsaturated fatty acid production by R. glutinis. Whatever the culture condition is, the reversible correlation between lipid and carotenoid production was detected. Remarkably, when adding 0.1 mM BaCl2, cellular lipid was significantly increased 14% more than the control, with 79.3% unsaturated fatty acid (46% C18:2 and C18:3) and 50% γ-carotene, while adding 1 mM NiSO4, cellular carotenoid was enhanced around 53% than the control (torulene 88%) with 81% unsaturated fatty acid (61% oleic acid). Excitingly, 68.8 g/l biomass with 41% cellular lipid (79% unsaturated fatty acid) and 426 µgpigment/gdcw cellular carotenoid (29.3 mg/L) (71% torulene) were obtained, when the pH-temperature dual controlled process combined with metallo-sulfo-phospho-glucose feeding approach in the 5 L bioreactor during the accumulation phase was conducted. This is the first study on the kinetic correlation between lipid and carotenoid under different C/P ratio and the dual effect of different metals like NiSO4 on lipid and carotenoid production by red oleaginous yeasts, which in turn significant for enhancing the coproduction of lipid and carotenoid by R. glutinis.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献