Efficient Catalytic Degradation of Phenol with Phthalocyanine-Immobilized Reduced Graphene–Bacterial Cellulose Nanocomposite

Author:

Wu Binbin,Sun Yikai,Fan Qiujin,Chen Jiahui,Fang Weizheng,Chen Shiliang

Abstract

In this report, phthalocyanine (Pc)/reduced graphene (rG)/bacterial cellulose (BC) ternary nanocomposite, Pc-rGBC, was developed through the immobilization of Pc onto a reduced graphene–bacterial cellulose (rGBC) nanohybrid after the reduction of biosynthesized graphene oxide-bacterial cellulose (GOBC) with N2H4. Field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FT-IR) were employed to monitor all of the functionalization processes. The Pc-rGBC nanocomposite was applied for the treatment of phenol wastewater. Thanks to the synergistic effect of BC and rG, Pc-rGBC had good adsorption capacity to phenol molecules, and the equilibrium adsorption data fitted well with the Freundlich model. When H2O2 was presented as an oxidant, phenol could rapidly be catalytically decomposed by the Pc-rGBC nanocomposite; the phenol degradation ratio was more than 90% within 90 min of catalytic oxidation, and the recycling experiment showed that the Pc-rGBC nanocomposite had excellent recycling performance in the consecutive treatment of phenol wastewater. The HPLC result showed that several organic acids, such as oxalic acid, maleic acid, fumaric acid, glutaric acid, and adipic acid, were formed during the reaction. The chemical oxygen demand (COD) result indicated that the formed organic acids could be further mineralized to CO2 and H2O, and the mineralization ratio was more than 80% when the catalytic reaction time was prolonged to 4 h. This work is of vital importance, in terms of both academic research and industrial practice, to the design of Pc-based functional materials and their application in environmental purification.

Funder

National Natural Science Foundation of China

Advanced Programs of Postdoctoral Research of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3