Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation

Author:

Ren KaiORCID,Zheng Ruxin,Xu Peng,Cheng Dong,Huo Wenyi,Yu Jin,Zhang Zhuoran,Sun Qingyun

Abstract

After the discovery of graphene, a lot of research has been conducted on two-dimensional (2D) materials. In order to increase the performance of 2D materials and expand their applications, two different layered materials are usually combined by van der Waals (vdW) interactions to form a heterostructure. In this work, based on first-principles calculation, some charming properties of the heterostructure constructed by Hf2CO2, AlN and GaN are addressed. The results show that Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures can keep their original band structure shape and have strong thermal stability at 300 K. In addition, the Hf2CO2/MN heterostructure has I-type band alignment structure, which can be used as a promising light-emitting device material. The charge transfer between the Hf2CO2 and AlN (or GaN) monolayers is 0.1513 (or 0.0414) |e|. The potential of Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures decreases by 6.445 eV and 3.752 eV, respectively, across the interface. Furthermore, both Hf2CO2/AlN and Hf2CO2/GaN heterostructures have remarkable optical absorption capacity, which further shows the application prospect of the Hf2CO2/MN heterostructure. The study of this work provides theoretical guidance for the design of heterostructures for use as photocatalytic and photovoltaic devices.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3