Abstract
GNSS/INS can provide position, attitude, and velocity (PAV) information for shipborne platforms. However, if the ship has a long-term linear motion or a stationary state, and is under the combined actions of sea surface swells, there will be a situation of sideslip and drift; if the ship is traveling slowly or shaking violently, the attitude calculation will not be completed. In the above situation, the traditional single-antenna GNSS/INS measurement mode is not suitable, and the attitude observability is poor; the heading angle attitude information, especially, will gradually diverge. Unreliable information will directly lead to a significant increase in underwater positioning errors. In this paper, a multi-antenna GNSS/INS combination algorithm is developed and used to provide high-precision PAV information, and is thereby able to obtain high-precision underwater positioning results. The experimental results show that the method has improved the acquisition of position and velocity in the horizontal direction and the accuracy of navigation attitude measurement. In particular, the attitude measurement accuracy in the 3 degrees of freedom (DoF) are improved by 10.1% (roll), 8.6% (pitch), and 29.3% (yaw).
Funder
Key Laboratory of Ocean Geomatics, Ministry of Natural Resources
Shandong Provincial Natural Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献