Research on Uncertainty of Landslide Susceptibility Prediction—Bibliometrics and Knowledge Graph Analysis

Author:

Yang ZhengliORCID,Liu ChaoORCID,Nie Ruihua,Zhang WanchangORCID,Zhang Leili,Zhang Zhijie,Li WeileORCID,Liu GangORCID,Dai XiaoaiORCID,Zhang DonghuiORCID,Zhang Min,Miao Shuangxi,Fu Xiao,Ren Zhiming,Lu HengORCID

Abstract

Landslide prediction is one of the complicated topics recognized by the global scientific community. The research on landslide susceptibility prediction is vitally important to mitigate and prevent landslide disasters. The instability and complexity of the landslide system can cause uncertainty in the prediction process and results. Although there are many types of models for landslide susceptibility prediction, they still do not have a unified theoretical basis or accuracy test standard. In the past, models were mainly subjectively selected and determined by researchers, but the selection of models based on subjective experience often led to more significant uncertainty in the prediction process and results. To improve the universality of the model and the reliability of the prediction accuracy, it is urgent to systematically summarize and analyze the performance of different models to reduce the impact of uncertain factors on the prediction results. For this purpose, this paper made extensive use of document analysis and data mining tools for the bibliometric and knowledge mapping analysis of 600 documents collected by two data platforms, Web of Science and Scopus, in the past 40 years. This study focused on the uncertainty analysis of four key research subfields (namely disaster-causing factors, prediction units, model space data sets, and prediction models), systematically summarized the difficulties and hotspots in the development of various landslide prediction models, discussed the main problems encountered in these four subfields, and put forward some suggestions to provide references for further improving the prediction accuracy of landslide disaster susceptibility.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3