Bivariate Landslide Susceptibility Analysis: Clarification, Optimization, Open Software, and Preliminary Comparison

Author:

Li Langping1ORCID,Lan Hengxing123

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710064, China

3. Key Laboratory of Ecological Geology and Disaster Prevention of Ministry of Natural Resources, Chang’an University, Xi’an 710064, China

Abstract

Bivariate data-driven methods have been widely used in landslide susceptibility analysis. However, the names, principles, and correlations of bivariate methods are still confused. In this paper, the names, principles, and correlations of bivariate methods are first clarified based on a comprehensive and in-depth survey. A total of eleven prevalent bivariate methods are identified, nominated, and elaborated in a general framework, constituting a well-structured bivariate method family. We show that all prevalent bivariate methods depend on empirical conditional probabilities of landslide occurrence to calculate landslide susceptibilities, either exclusively or inclusively. It is clarified that those eight “conditional-probability-based” bivariate methods, which exclusively depend on empirical conditional probabilities, are particularly strongly correlated in principle, and therefore are expected to have a very close or even the same performance. It is also suggested that conditional-probability-based bivariate methods apply to a “classification-free” modification, in which factor classifications are avoided and the result is dominated by a single parameter, “bin width”. Then, a general optimization framework for conditional-probability-based bivariate methods, based on the classification-free modification and obtaining optimum results by optimizing the dominant parameter bin width, is proposed. The open software Automatic Landslide Susceptibility Analysis (ALSA) is updated to implement the eight conditional-probability-based bivariate methods and the general optimization framework. Finally, a case study is presented, which confirms the theoretical expectation that different conditional-probability-based bivariate methods have a very close or even the same performance, and shows that optimal bivariate methods perform better than conventional bivariate methods regarding both the prediction rate and the ability to reveal the quasi-continuous varying pattern of sensibilities to landslides for individual predisposing factors. The principles and open software presented in this study provide both theoretical and practical foundations for applications and explorations of bivariate methods in landslide susceptibility analysis.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3