Author:
Tan Xiaopeng,Su Shaojing,Huang Zhiping,Guo Xiaojun,Zuo Zhen,Sun Xiaoyong,Li Longqing
Abstract
With the wide application of wireless sensor networks in military and environmental monitoring, security issues have become increasingly prominent. Data exchanged over wireless sensor networks is vulnerable to malicious attacks due to the lack of physical defense equipment. Therefore, corresponding schemes of intrusion detection are urgently needed to defend against such attacks. Considering the serious class imbalance of the intrusion dataset, this paper proposes a method of using the synthetic minority oversampling technique (SMOTE) to balance the dataset and then uses the random forest algorithm to train the classifier for intrusion detection. The simulations are conducted on a benchmark intrusion dataset, and the accuracy of the random forest algorithm has reached 92.39%, which is higher than other comparison algorithms. After oversampling the minority samples, the accuracy of the random forest combined with the SMOTE has increased to 92.57%. This shows that the proposed algorithm provides an effective solution to solve the problem of class imbalance and improves the performance of intrusion detection.
Funder
National Natural Science Foundation of China
National Technology Foundation Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献