A Generalized and Robust Nonlinear Approach based on Machine Learning for Intrusion Detection

Author:

Rahman Jakiur1,Singh Jaskaran2,Nayak Soumen1,Jena Biswajit1,Mohanty Lopamudra3,Singh Narpinder4,Laird John R.5,Singh Rajesh6,Garg Deepak7,Khanna Narendra N.8,Fouda Mostafa M.9,Saba Luca10,Suri Jasjit S.291112

Affiliation:

1. Department of CSE, SOA Deemed to be University, Bhubaneswar, Odisha, India

2. Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, California, USA

3. Department of Computer Science, ABES Engineering College, Ghaziabad, India

4. Department of Food Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

5. Heart and Vascular Institute, Adventist Health St. Helena, St Helena, California, USA

6. Division of Research and Innovation, Uttaranchal Institute of Technology, Dehradun, India

7. School of Computer Science and Artificial Intelligence, SR University, Warangal, India

8. Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India

9. Department of Electrical and Computer Engineering, Idaho State University, Pocatello, Idaho, USA

10. Department of Neurology, University of Cagliari, Cagliari, Italy

11. Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

12. Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India

Publisher

Informa UK Limited

Reference92 articles.

1. Abrar, I., Z. Ayub, F. Masoodi, and A. M. Bamhdi. 2020. A machine learning approach for intrusion detection system on NSL-KDD dataset. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India. IEEE.

2. A Review of the Advances in Cyber Security Benchmark Datasets for Evaluating Data-Driven Based Intrusion Detection Systems

3. Almseidin, M., M. Alzubi, S. Kovacs, and M. Alkasassbeh. 2017. Evaluation of machine learning algorithms for intrusion detection system. In 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia. IEEE.

4. Alrowaily, M., F. Alenezi, and Z. Lu. 2019. Effectiveness of machine learning based intrusion detection systems. Security, Privacy, and Anonymity in Computation, Communication, and Storage: 12th International Conference, SpaCCS 2019, Atlanta, GA, USA. Springer.

5. Amor, N. B., S. Benferhat, and Z. Elouedi. 2004. Naive Bayes vs decision trees in intrusion detection systems. In Proceedings of the 2004 ACM symposium on Applied computing, Nicosia, Cyprus.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3