Effects of Different Urbanization Levels on Land Surface Temperature Change: Taking Tokyo and Shanghai for Example

Author:

Chao ZhenhuaORCID,Wang LiangxuORCID,Che Mingliang,Hou Shengfang

Abstract

The influence of different urbanization levels on land surface temperature (LST) has attracted extensive attention. Though both are world megacities, Shanghai and Tokyo have gone through different urbanization processes that urban sprawl characterized by impervious surfaces was more notable in Shanghai than in Tokyo over the past years. Here, annual and seasonal mean LST in daytime (LSTday), in nighttime (LSTnight), and LSTdiff (annual and seasonal mean difference of LST in daytime and nighttime) were extracted from the MODIS LST product, MYD11A2 006, for 9 typical sites in Shanghai and Tokyo from 2003 to 2018, respectively. Then the effects of the urbanization levels were analyzed through Mann-Kendall statistics and Sen’s slope estimator. The trends of change in LSTday and LSTdiff for most sites in Shanghai, an urbanizing region, rose. In addition, there was no obvious regularity when considering seasonal factors, which could be due to the increasing fragmentized landscapes and scattered water bodies produced by urbanization. By comparison, the change in LST in Tokyo, a post-urbanizing region, was regular, especially in the spring. In other seasons, there was no obvious trend in temperature change regardless of whether the land cover was impervious surface or mountain forest. On the whole, vegetation cover and water bodies can mitigate the urban heat island (UHI) effect in urban regions. For more scientific urban planning, further analysis about the effect of urbanization on LST should focus on the compound stress from climate change and urbanization.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3