Nonlinear Relationship of Multi-Source Land Use Features with Temporal Travel Distances at Subway Station Level: Empirical Study from Xi’an City

Author:

Li Peikun1ORCID,Yang Quantao2,Lu Wenbo3ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

2. Department of Public Security, Shaanxi Police College, Xi’an 710021, China

3. School of Transportation, Southeast University, Nanjing 214135, China

Abstract

The operation of the subway system necessitates a comprehensive understanding of passenger flow characteristics at station locations, as well as a keen awareness of the average travel distances at these stations. Moreover, the travel distances at the station level bear a direct relationship with the built environment composed of land use characteristics within the station’s catchment area. To this end, we selected the land use features within an 800 m radius of the station (land use area, distribution of points of interest, and the surrounding living environment) as the influencing factors, with the travel distances at peak hours on the subway network in Xi’an as the research subject. An improved SSA-XGBOOST-SHAP interpretable machine learning framework was established. The research findings demonstrate that the proposed enhanced model outperforms traditional machine learning or linear regression methods in terms of R-squared, MAE, and RMSE. Furthermore, the distance from the city center, road network density, the number of public transit routes, and the land use mix have a pronounced influence on travel distances, reflecting the significant impact that mature built environments can have on passenger attraction. Additionally, the analysis reveals a notable nonlinear relationship and threshold effect between the built environment variables comprising land use and the travel distances during peak hours. The research results provide data-driven support for operational strategy management and line capacity optimization, as well as theoretical underpinnings for enhancing the efficiency and sustainability of the entire subway system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3