Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks

Author:

Liao Lingxia,Leung Victor C. M.ORCID,Li Zhi,Chao Han-Chieh

Abstract

To enable learning-based network management and optimization, the 5th Generation Mobile Communication Technology and Internet of Things systems usually involve software-defined networking (SDN) architecture and multiple SDN controllers to efficiently collect the big volume of runtime statistics, define network-wide policies, and enforce the policies over the whole network. To better plan the placement of controllers over SDN systems, this article proposes a generic controller placement problem (GCP) that considers the organization and placement of controllers as well as the switch attachment to optimize the delay between controllers and switches, the delay among controllers, and the load imbalance among controllers. To solve this problem without losing generality, a novel multi-objective genetic algorithm (MOGA) with a mutation based on a variant Particle Swarm Optimization (PSO) is proposed. This PSO chooses a global best position for a particle according to a pre-computed global best position set to lead the mutation of the particle. It successfully handles multiple conflicting objectives, fits the scenario of mutation, and can apply in many other flavors of MOGAs. Evaluations over 12 real Internet service provider networks show the effectiveness of our MOGA in reducing convergence time and improving the diversity and accuracy of the Pareto frontiers. The proposed approaches in formulating and solving the GCP in this article are general and can be applied in many other optimization problems with minor modifications.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. Symmetry in Complex Network Systems;In,2018

2. Survey on Network Slicing for Internet of Things Realization in 5G Networks

3. FlexMonitor: A Flexible Monitoring Framework in SDN

4. Symmetry-Aware SFC Framework for 5G Networks

5. Software-Defined Networking: The New Norm for Networkshttps://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3