An Adaptive Symmetrical Load Balancing Scheme for Next Generation Wireless Networks

Author:

Manzoor Sohaib1ORCID,Mazhar Farrukh1,Binaris Abdullah1,Hassan Moeen Uddin1,Rasab Faria1,Mohamed Heba G.2ORCID

Affiliation:

1. Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250, Pakistan

2. Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

In dense Wi-Fi networks, achieving load balancing is critical to optimize network utilization and provide equitable network consumption among the users. Traditional Wi-Fi networks have issues in attaining effective load balancing. Software-Defined Networking (SDN) has presented a viable solution by isolating the data plane and control plane, enabling more agile and cost-effective networks. In this paper we put forward an Adaptive Symmetrical Load Balancing (ASLB) scheme to ensure fairness of load symmetry in Software Defined Wi-Fi Networks (SD-Wi-Fi), while also optimizing the flows transition process using an Analytical Hierarchal Process (AHP). User activity is monitored by access points (APs), which operate under OpenFlow standards. Three essential features, packet volume, packet category and delay hindrance, are used for flow assignment to various controllers. The controllers are arranged in two tiers, universal and regional controllers. The universal controller (UC) handles the workload statistics of regional controllers (RC) in the form of clusters. Extensive simulations using OMNeT++ simulator are performed. The performance parameters taken into consideration are throughput, delay, packet loss rate, network transition count and workload distribution. Our findings demonstrate that the ASLB technique effectively optimizes the network utilization and ensures equitable network consumption among the end users. The proposed scheme outperforms the Mean Probe Delay scheme (MPD), Channel Measurement-based Access Selection scheme (CMAS), Received Signal Strength Indicator-based scheme (RSSI) and Distributed Antenna Selection scheme (DASA), being 40% higher in throughput and 25% lower in delay.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3