Characterizing Tree Spatial Distribution Patterns Using Discrete Aerial Lidar Data

Author:

Wang Xiaofei,Zheng Guang,Yun Zengxin,Moskal L. MonikaORCID

Abstract

Tree spatial distribution patterns such as random, regular, and clustered play a crucial role in numerical simulations of carbon and water cycles and energy exchanges between forest ecosystems and the atmosphere. An efficient approach is needed to characterize tree spatial distribution patterns quantitatively. This study aims to employ increasingly available aerial laser scanning (ALS) data to capture individual tree locations and further characterize their spatial distribution patterns at the landscape or regional levels. First, we use the pair correlation function to identify the categories (i.e., random, regular, and clustered) of tree spatial distribution patterns, and then determine the unknown parameters of statistical models used for approximating each tree spatial distribution pattern using ALS-based metrics. After applying the proposed method in both natural and urban forest sites, our results show that ALS-based tree crown radii can capture 58%–77% (p < 0.001) variations of visual-based measurements depending on forest types and densities. The root mean squared errors (RMSEs) of ALS-based tree locations increase from 1.46 m to 2.51 m as the forest densities increasing. The Poisson, soft-core, and hybrid-Gibbs point processes are determined as the optimal models to approximate random, regular, and clustered tree spatial distribution patterns, respectively. This work provides a solid foundation for improving the simulation accuracy of forest canopy bidirectional reflectance distribution function (BRDF) and further obtain a better understanding of the processes of carbon and water cycles of forest ecosystems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3