Dynamic Formation Processes and Characteristics of “28 June 2012” Debris Flow in Aizi Valley, Ningnan County, Sichuan Province, China

Author:

He NaORCID,Liu Daxiang,Zhang Xianggang,Xu LinjuanORCID,Yang ZhiquanORCID

Abstract

On 28 June 2012, a large debris flow occurred in Aizi gully, Ningnan County, Sichuan Province, China. It was the most significant debris flow disaster at a construction site in 2012 in China, which left 40 people dead or missing. Field investigations and model calculations were conducted following the event in order to determine dynamic parameters and execute engineering mitigation measures. Analyzing the collected data, it is found that earthquake and drought play a dominant role in debris flow initiation, and from 1 January 1986 to 31 December 2010, 43 earthquakes with a magnitude greater than 3.0 occurred around the study area. Through calculation it was found that the inducive radius of 16 earthquakes was larger than the distance between the epicenter and the study area, and it proves that the study area is frequently affected by seismic activities. Furthermore, on the basis of calculation of rainfall anomaly index H from January 2011 to June 2012, it can be seen that the rainfall of 2011 is extremely low. The percentage of the rainfall anomaly index is almost less than −34%, which indicates that the drought in the basin is serious. Under the influences of repeated seismic activities and continuous droughts, the structure of soil was destroyed and its strength and permeability changed significantly, providing favorable conditions for debris flow initiation. On 28 June 2012, heavy rainfall with the intensity of 23.3 mm/h occurred, and the total amount of precipitation reached 66.1 mm before 6am of 28 June 2012. Debris flow was induced due to the triggering effect of the torrential rain. Studying the causes of the large-scale debris flows in construction sites can significantly facilitate the prevention and mitigation of future debris flow disasters, as well as reduce the potential of hazards caused by debris flows in major engineering areas.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3