Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: implication for evolution of landslide-generated debris flows

Author:

Yang Zongji,Wang Liyong,Qiao Jianping,Uchimura Taro,Wang Lin

Abstract

AbstractRainfall-induced landslides are a frequent and often catastrophic geological disaster, and the development of accurate early warning systems for such events is a primary challenge in the field of risk reduction. Understanding of the physical mechanisms of rainfall-induced landslides is key for early warning and prediction. In this study, a real-time multivariate early warning method based on hydro-mechanical analysis and a long-term sequence of real-time monitoring data was proposed and verified by applying the method to predict successive debris flow events that occurred in 2017 and 2018 in Yindongzi Gully, which is in Wenchuan earthquake region, China. Specifically, long-term sequence slope stability analysis of the in situ datasets for the landslide deposit as a benchmark was conducted, and a multivariate indicator early warning method that included the rainfall intensity-probability (I-P), saturation (Si), and inclination (Ir) was then proposed. The measurements and analysis in the two early warning scenarios not only verified the reliability and practicality of the multivariate early warning method but also revealed the evolution processes and mechanism of the landslide-generated debris flow in response to rainfall. Thus, these findings provide a new strategy and guideline for accurately producing early warnings of rainfall-induced landslides.

Funder

National Natural Science Foundation of China

Scientific Foundation of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3