Predicting Dynamics of Soil Salinity and Sodicity Using Remote Sensing Techniques: A Landscape-Scale Assessment in the Northeastern Egypt

Author:

Abuzaid Ahmed S.1ORCID,El-Komy Mostafa S.2,Shokr Mohamed S.3ORCID,El Baroudy Ahmed A.3ORCID,Mohamed Elsayed Said4ORCID,Rebouh Nazih Y.5ORCID,Abdel-Hai Mohamed S.6

Affiliation:

1. Soils and Water Department, Faculty of Agriculture, Benha University, Benha 13518, Egypt

2. National Water Research Center (NWRC), Drainage Research Institute (DRI), Cairo 13411, Egypt

3. Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt

4. National Authority for Remote Sensing and Space Sciences, Cairo 11843, Egypt

5. Department of Environmental Management, RUDN University, 6 Miklukho-Maklaya St, Moscow 117198, Russia

6. Agricultural Research Center (ARC), Soils, Water and Environment Research Institute (SWERI), Giza 12411, Egypt

Abstract

Traditional mapping of salt affected soils (SAS) is very costly and cannot precisely depict the space–time dynamics of soil salts over landscapes. Therefore, we tested the capacity of Landsat 8 Operational Land Imager (OLI) data to retrieve soil salinity and sodicity during the wet and dry seasons in an arid landscape. Seventy geo-referenced soil samples (0–30 cm) were collected during March (wet period) and September to be analyzed for pH, electrical conductivity (EC), and exchangeable sodium percentage (ESP). Using 70% of soil and band reflectance data, stepwise linear regression models were constructed to estimate soil pH, EC, and ESP. The models were validated using the remaining 30% in terms of the determination coefficient (R2) and residual prediction deviation (RPD). Results revealed the weak variability of soil pH, while EC and ESP had large variabilities. The three indicators (pH, EC, and ESP) increased from the wet to dry period. During the two seasons, the OLI bands had weak associations with soil pH, while the near-infrared (NIR) band could effectively discriminate soil salinity and sodicity levels. The EC and ESP predictive models in the wet period were developed with the NIR band, achieving adequate outcomes (an R2 of 0.65 and 0.61 and an RPD of 1.44 and 1.43, respectively). In the dry period, the best-fitted models were constructed with deep blue and NIR bands, yielding an R2 of 0.59 and 0.60 and an RPD of 1.49 and 1.50, respectively. The SAS covered 50% of the study area during the wet period, of which 14 and 36% were saline and saline-sodic soils, respectively. The extent increased up to 59% during the dry period, including saline soils (12%) and saline-sodic soils (47%). Our findings would facilitate precise, rapid, and cost-effective monitoring of soil salinity and sodicity over large areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3