Inversion Model of Salt Content in Alfalfa-Covered Soil Based on a Combination of UAV Spectral and Texture Information

Author:

Zhao Wenju1,Ma Fangfang1,Yu Haiying1,Li Zhaozhao1

Affiliation:

1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

This study aimed to investigate how the combination of texture information and spectral index affects the accuracy of the soil salinity inversion model. Taking the Bianwan Farm in Jiuquan City, Gansu Province, China as the research area, the multi-spectral data and soil salinity data at 0–15 cm, 15–30 cm and 30–50 cm depths in the sampling area under alfalfa coverage were collected, and spectral reflectance and texture features were obtained from a multispectral image. Moreover, the red-edge band was introduced to improve the spectral index, and gray correlation analysis was utilized to screen sensitive features. Five types of alfalfa-covered soil salinity machine learning inversion models based on random forest (RF) and extreme learning machine (ELM) algorithms were constructed, using the salinity index (SIs), vegetation index (VIs), salinity index + vegetation index (SIs + VIs), vegetation index + texture feature (VIs + TFs), and vegetation index + texture index (VIs + TIs). The determination coefficient R2, root-mean-square error (RMSE) and mean absolute error (MAE) were used to evaluate each model’s performance. The results show that the VIs model is more accurate than the SIs and SIs +VIs models. Combining texture information with VIs improves the inversion accuracy, and the VIs + TIs model has the best inversion effect. From the perspective of inversion depth, the inversion effect for 0–15 cm soil salinity was significantly better than that for other depths, and was the best inversion depth under alfalfa cover. The average R2 of the RF model was 10% higher than that of the ELM. The RF algorithm has high inversion accuracy and stability and performs better than ELM. These findings can serve as a theoretical basis for the efficient inversion of soil salinity and management of saline–alkali lands.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3