Brake Light Detection Algorithm for Predictive Braking

Author:

Pirhonen JesseORCID,Ojala RistoORCID,Kivekäs KlausORCID,Vepsäläinen JariORCID,Tammi KariORCID

Abstract

There has recently been a rapid increase in the number of partially automated systems in passenger vehicles. This has necessitated a greater focus on the effect the systems have on the comfort and trust of passengers. One significant issue is the delayed detection of stationary or harshly braking vehicles. This paper proposes a novel brake light detection algorithm in order to improve ride comfort. The system uses a camera and YOLOv3 object detector to detect the bounding boxes of the vehicles ahead of the ego vehicle. The bounding boxes are preprocessed with L*a*b colorspace thresholding. Thereafter, the bounding boxes are resized to a 30 × 30 pixel resolution and fed into a random forest algorithm. The novel detection system was evaluated using a dataset collected in the Helsinki metropolitan area in varying conditions. Carried out experiments revealed that the new algorithm reaches a high accuracy of 81.8%. For comparison, using the random forest algorithm alone produced an accuracy of 73.4%, thus proving the value of the preprocessing stage. Furthermore, a range test was conducted. It was found that with a suitable camera, the algorithm can reliably detect lit brake lights even up to a distance of 150 m.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Annual Accident Report 2018 https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf

2. A Back-of-Queue Model of a Signal-Controlled Intersection Approach Developed Based on Analysis of Vehicle Driver Behavior

3. Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings

4. Yolov3: An incremental improvement;Redmon;arXiv,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3