The Influence of Wetting Agent and Type of Nozzle on Copper Hydroxide Deposit on Sugar Beet Leaves (Beta vulgaris L.)

Author:

Sedlar Aleksandar,Gvozdenac SonjaORCID,Pejović Momčilo,Višacki VladimirORCID,Turan Jan,Tanasković SnežanaORCID,Burg PatrikORCID,Vasić Filip

Abstract

Protective fungicides are sensitive to environmental conditions such as rainfall and solar radiation. Therefore, it is important to prolong the biological activity and fungicide resistance to the above-mentioned factors that can be achieved by adding a wetting agent to the working solution. Additionally, the quality and efficiency of preventive contact fungicides significantly depend on the application technique. Thus, it is important to make the right choice of the nozzles and adjust the working parameters of the treatment. The aim of this work is to determine the influence of a wetting agent and type of nozzle on copper hydroxide (2 L ha−2) deposits on sugar beet leaves. Experiments are set up under laboratory and field conditions. A pinole-based wetting agent is applied at three rates (0.3, 0.6, and 1.0 L ha−1) and two types of nozzles are used (standard with flat jet and modern turbo-drop twin-jet). A brilliant blue tracer is added to a working solution to enable the measurement of copper hydroxide deposits. The deposit amount is recorded before and after the rain simulation (15 L m−2) with a spectrophotometer light beam. In order to ensure the timeliness of the application of fungicides, remote sensing of vegetative indices is used as an indicator of disease occurrence. The results indicated an increase in copper hydroxide deposits with the increase in wetting agent rates for both types of nozzles and in both laboratory and field experiments. Moreover, when applying the copper hydroxide mixtures with modern turbo drop nozzles, the increase in copper hydroxide deposit is significant, compared to the standard nozzles.

Funder

Ministry of Education, Science and Technology Development of Republic of Serbia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3