A Predictive Reliability Model to Assess the Performance of Photovoltaic Systems

Author:

Solouma NahedORCID,El Berry AmalORCID

Abstract

Clean energy is extremely important not only because of economic purposes but also for health considerations. The use of photovoltaic (PV) systems is growing, with the increased needs for electricity. This requires more attention to research of PV systems. In this study, a method to predict the expected lifetime based on the reliability of system performance is proposed. Geographical data were collected near two different locations: Cairo, Egypt and Riyadh, Saudi Arabia. The PV system was simulated with inputs from collected data to obtain the device factors and system responses. To study the significance of inputs and device parameters on the system responses, the Taguchi OA method was used. The probability density function (pdf) of the time of acceptable performance was estimated from the simulation data. A reliability analysis method was applied to the obtained pdf to estimate the reliability function, lifetime or mean life, reliable life, and rate of failure of the used PV system as assessment factors. The results showed that the system efficiency is highly dependent on the ambient temperature, while the performance ratio depends on many variables. The reliability analysis revealed that the field orientation of 30° tilt and 20° azimuth and of 30° tilt and 30° azimuth are best for near Cairo and near Riyadh, respectively. These orientations lead to the longest mean life of 772.25 and 688.36 months for Cairo and Riyadh, respectively. It also resulted in the lowest failure rates of 0.001295 and 0.001228 per month for both regions.

Funder

Deanship of Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3