Optimization of wind off-grid system for remote area: Egyptian application

Author:

Berry Amal El1,Ibrahim Marwa M.1ORCID

Affiliation:

1. Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre (NRC), Cairo, Egypt

Abstract

Due unexpected nature of renewable energy systems, the (Wind/Diesel/Battery) (W/D/B) off-grid system has initially been investigated at a South Sinai location in Egypt for home-scale consumption. Eight different systems, each of which consists of a small wind turbine, storage batteries, and diesel generator, are investigated in accordance with the varying needs of the power loads and seasonal weather data. The major goal is to investigate how adding wind power as an energy source will affect the price of electricity generated while taking into account the cost of reducing CO2 emissions as an external benefit of the wind turbine, which emits no pollutants during operation. In order to compare a Taguchi OA design to a two-level full factorial design to evaluate the systems at two separate sites (South Sinai and the Western Desert in Egypt), a design evaluation tool in DOE++ will be used. To pinpoint the crucial variables and analyze the impact of six different factors on eight different sets, Taguchi OA is used. The proportion of power shortfall is a production indicator, while the net present cost (NPC) and cost of energy (COE) are used as economic indicators. The simulation results demonstrate that W/D/B systems are economically viable for the hypothetical community site when using HOMER software, with electricity generated at a cost of about 0.285$/kWh without accounting for external benefits and 0.221$/kWh if CO2 emissions are competitive with diesel-only systems, where COE is 0.432$/kWh. As a new evaluation approach, the Box-Cox transformation calculated the best λ is about −2 at the two locations, indicating similar technique behaviors, and the fitted probability shows, meaning that the significant impact of system components are wind turbines. Regression model of CO2 emission is demonstrated to be successful for estimates at the Western Desert location than the South Sinai region

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3