Abstract
Data security technology is of great significance to the application of high resolution remote sensing image (HRRS) images. As an important data security technology, perceptual hash overcomes the shortcomings of cryptographic hashing that is not robust and can achieve integrity authentication of HRRS images based on perceptual content. However, the existing perceptual hash does not take into account whether the user focuses on certain types of information of the HRRS image. In this paper, we introduce the concept of subject-sensitive perceptual hash, which can be seen as a special case of conventional perceptual hash, for the integrity authentication of HRRS image. To achieve subject-sensitive perceptual hash, we propose a new deep convolutional neural network architecture, named MUM-Net, for extracting robust features of HRRS images. MUM-Net is the core of perceptual hash algorithm, and it uses focal loss as the loss function to overcome the imbalance between the positive and negative samples in the training samples. The robust features extracted by MUM-Net are further compressed and encoded to obtain the perceptual hash sequence of HRRS image. Experiments show that our algorithm has higher tamper sensitivity to subject-related malicious tampering, and the robustness is improved by about 10% compared to the existing U-net-based algorithm; compared to other deep learning-based algorithms, this algorithm achieves a better balance between robustness and tampering sensitivity, and has better overall performance.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献