DAM SRAM CORE: An Efficient High-Speed and Low-Power CIM SRAM CORE Design for Feature Extraction Convolutional Layers in Binary Neural Networks

Author:

Zhao Ruiyong12,Gong Zhenghui1,Liu Yulan12,Chen Jing1

Affiliation:

1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200031, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This article proposes a novel design for an in-memory computing SRAM, the DAM SRAM CORE, which integrates storage and computational functionality within a unified 11T SRAM cell and enables the performance of large-scale parallel Multiply–Accumulate (MAC) operations within the SRAM array. This design not only improves the area efficiency of the individual cells but also realizes a compact layout. A key highlight of this design is its employment of a dynamic aXNOR-based computation mode, which significantly reduces the consumption of both dynamic and static power during the computational process within the array. Additionally, the design innovatively incorporates a self-stabilizing voltage gradient quantization circuit, which enhances the computational accuracy of the overall system. The 64 × 64 bit DAM SRAM CORE in-memory computing core was fabricated using the 55 nm CMOS logic process and validated via simulations. The experimental results show that this core can deliver 5-bit output results with 1-bit input feature data and 1-bit weight data, while maintaining a static power consumption of 0.48 mW/mm2 and a computational power consumption of 11.367 mW/mm2. This showcases its excellent low-power characteristics. Furthermore, the core achieves a data throughput of 109.75 GOPS and exhibits an impressive energy efficiency of 21.95 TOPS/W, which robustly validate the effectiveness and advanced nature of the proposed in-memory computing core design.

Funder

Science and Technology Commission of Shanghai Municipality

Shanghai Zhangjiang Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3