Predicting the Output of Solar Photovoltaic Panels in the Absence of Weather Data Using Only the Power Output of the Neighbouring Sites

Author:

Jeong Heon1

Affiliation:

1. Department of Fire Service Administration, Chodang University, Muan-gun 58530, Republic of Korea

Abstract

There is an increasing need for capable models in the forecast of the output of solar photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV systems. There is also a shortage of studies on forecasts of the output power of solar photovoltaics sites in the absence of meteorological data. Unlike common methods, this study explores numerous machine learning algorithms for forecasting the output of solar photovoltaic panels in the absence of weather data such as temperature, humidity and wind speed, which are often used when forecasting the output of solar PV panels. The considered models include Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN) and Transformer. These models were used with the data collected from 50 different solar photo voltaic sites in South Korea, which consist of readings of the output of each of the sites collected at regular intervals. This study focuses on obtaining multistep forecasts for the multi-in multi-out, multi-in uni-out and uni-in uni-out settings. Detailed experimentation was carried out in each of these settings. Finally, for each of these settings and different lookback and forecast lengths, the best models were also identified.

Funder

Institute of Information and communications Technology Planning and Evaluation

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3