Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data

Author:

Brahma BanalaxmiORCID,Wadhvani Rajesh

Abstract

The ever-growing interest in and requirement for green energy have led to an increased focus on research related to forecasting solar irradiance recently. This study aims to develop forecast models based on deep learning (DL) methodologies and multiple-site data to predict the daily solar irradiance in two locations of India based on the daily solar radiation data obtained from NASA’s POWER project repository over 36 years (1983–2019). The forecast modeling of solar irradiance data is performed for extracting and learning the symmetry latent in data patterns and relationships by the machine learning models and utilizing it to predict future solar data. The goodness of fit and model performance are compared with rolling window evaluation using mean squared error, root-mean-square error and coefficient of determination (R2) for evaluation. The contributions of this study can be summarized as follows: (i) time series models based on deep learning methodologies were implemented to forecast the daily solar irradiance of two locations in India in consideration of the historical data collected by NASA; (ii) the models were developed on the basis of single-location univariate data as well as multiple-location data; (iii) the accuracy, performance and reliability of the model were investigated on the basis of standard performance evaluation metrics and rolling window evaluation; (iv) the feature importance of the nearby locations with respect to forecasting target location solar irradiance was analyzed and compared based on the solar irradiance data obtained from NASA over 36 years. The results indicate that the bidirectional long short-term memory (LSTM) and attention-based LSTM models can be used for forecasting daily solar irradiance data. According to the findings, the multiple-site data with solar irradiance historical data improve upon the forecast performance of single-location univariate solar data.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3