Laser-Based People Detection and Obstacle Avoidance for a Hospital Transport Robot

Author:

Zheng KuisongORCID,Wu FengORCID,Chen Xiaoping

Abstract

This paper describes the development of a laser-based people detection and obstacle avoidance algorithm for a differential-drive robot, which is used for transporting materials along a reference path in hospital domains. Detecting humans from laser data is an important functionality for the safety of navigation in the shared workspace with people. Nevertheless, traditional methods normally utilize machine learning techniques on hand-crafted geometrical features extracted from individual clusters. Moreover, the datasets used to train the models are usually small and need to manually label every laser scan, increasing the difficulty and cost of deploying people detection algorithms in new environments. To tackle these problems, (1) we propose a novel deep learning-based method, which uses the deep neural network in a sliding window fashion to effectively classify every single point of a laser scan. (2) To increase the speed of inference without losing performance, we use a jump distance clustering method to decrease the number of points needed to be evaluated. (3) To reduce the workload of labeling data, we also propose an approach to automatically annotate datasets collected in real scenarios. In general, the proposed approach runs in real-time and performs much better than traditional methods. Secondly, conventional pure reactive obstacle avoidance algorithms can produce inefficient and oscillatory behaviors in dynamic environments, making pedestrians confused and possibly leading to dangerous reactions. To improve the legibility and naturalness of obstacle avoidance in human crowded environments, we introduce a sampling-based local path planner, similar to the method used in autonomous driving cars. The key idea is to avoid obstacles by switching lanes. We also adopt a simple rule to decrease the number of unnecessary deviations from the reference path. Experiments carried out in real-world environments confirmed the effectiveness of the proposed algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3