Faster Evaluation of Dimensional Machine Performance in Additive Manufacturing by Using COMPAQT Parts

Author:

Spitaels Laurent1ORCID,Nieto Fuentes Endika2,Dambly Valentin1ORCID,Rivière-Lorphèvre Edouard1ORCID,Arrazola Pedro-José2ORCID,Ducobu François1ORCID

Affiliation:

1. UMONS Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, 7000 Mons, Belgium

2. Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, 20500 Arrasate-Mondragón, Spain

Abstract

Knowing the tolerance interval capabilities (TICs) of a manufacturing process is of prime interest, especially if specifications link the manufacturer to a customer. These TICs can be determined using the machine performance concept of ISO 22514. However, few works have applied this to Additive Manufacturing printers, while testing most of the printing area as recommended takes a very long time (nearly 1 month is common). This paper, by proposing a novel part design called COMPAQT (Component for Machine Performances Assessment in Quick Time), aims at giving the same level of printing area coverage, while keeping the manufacturing time below 24 h. The method was successfully tested on a material extrusion printer. It allowed the determination of potential and real machine tolerance interval capabilities. Independently of the feature size, those aligned with the X axis achieved lower TICs than those aligned with the Y axis, while the Z axis exhibited the best performance. The measurements specific to one part exhibited a systematic error centered around 0 mm ± 0.050 mm, while those involving two parts reached up to 0.314 mm of deviation. COMPAQT can be used in two applications: evaluating printer tolerance interval capabilities and tracking its long-term performance by incorporating it into batches of other parts.

Funder

The European Union and the Walloon regional government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3