Surface roughness of as-printed polymers: a comprehensive review

Author:

Golhin Ali PayamiORCID,Tonello RiccardoORCID,Frisvad Jeppe RevallORCID,Grammatikos SotiriosORCID,Strandlie AreORCID

Abstract

AbstractSurface roughness is gaining increasing recognition in the processing design methods of additive manufacturing (AM) due to its role in many critical applications. This impact extends not only to various AM product manufacturing but also to indirect applications, such as molding and casting. This review article discusses the role of processing on the surface roughness of AM-printed polymers with limited post-processing by summarizing recent advances. This review offers a benchmark for surface quality improvement of AM processes, considering the surface roughness of polymeric parts. For this purpose, it lists and analyzes the key processes and various printing parameters used to monitor and adjust surface roughness under given constraints. Four AM techniques for manufacturing polymeric parts are compared: fused filament fabrication (FFF), selective laser sintering (SLS), vat photopolymerization (VPP), and material jetting (MJT). A review and discussion of recent studies are presented, along with the most critical process parameters that affect surface roughness for the selected AM techniques. To assist in selecting the most appropriate method of 3D printing, comparable research summaries are presented. The outcome is a detailed survey of current techniques, process parameters, roughness ranges, and their applicability in achieving surface quality improvement in as-printed polymers.

Funder

Horizon 2020 Framework Programme

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3