Affiliation:
1. Division of Engineering Technology, College of Engineering and Technology, University of Michigan, Flint, MI 48502, USA
2. Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA
Abstract
This critical review provides a comprehensive analysis of various condition monitoring techniques pivotal in additive manufacturing (AM) processes. The reliability and quality of AM components are contingent upon the precise control of numerous parameters and the timely detection of potential defects, such as lamination, cracks, and porosity. This paper emphasizes the significance of in situ monitoring systems—optical, thermal, and acoustic—which continuously evaluate the integrity of the manufacturing process. Optical techniques employing high-speed cameras and laser scanners provide real-time, non-contact assessments of the AM process, facilitating the early detection of layer misalignment and surface anomalies. Simultaneously, thermal imaging techniques, such as infrared sensing, play a crucial role in monitoring complex thermal gradients, contributing to defect detection and process control. Acoustic monitoring methods augmented by advancements in audio analysis and machine learning offer cost-effective solutions for discerning the acoustic signatures of AM machinery amidst variable operational conditions. Finally, machine learning is considered an efficient technique for data processing and has shown great promise in feature extraction.
Funder
RCA fund
Undergraduate Research Opportunity Program (UROP) fund
Office of Research University of Michigan