An 11.8-fJ/Conversion-Step Noise Shaping SAR ADC with Embedded Passive Gain for Energy-Efficient IoT Sensors

Author:

Choi Changhyung,Lee Jong-WookORCID

Abstract

Herein, we present a noise shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) with an embedded passive gain multiplication technique. The noise shaping moves the in-band quantization noise from the signal band to out-of-band for improved signal-to-noise ratio (SNR). The proposed approach tackles the drawback of the previous active noise shaping (increased power and extra noise) and passive noise shaping (limited noise suppression and signal loss). Both noise shaping and gain multiplication are realized on-chip in an energy-efficient manner without an opamp. This approach uses only capacitors and switches in the finite impulse response (FIR) and infinite impulse response (IIR) filters. A comparator suppressing kickback noise is presented to handle the tradeoff between noise suppression and the filter capacitor size. The energy-efficient merged-capacitor switching (MCS) technique is effectively combined with rail-to-rail swing comparator and thermometer-coded capacitor array, which reduces the settling error in the digital to analog converter (DAC). The process-induced mismatch effect in the capacitive DAC is investigated using a behavioral model of the ADC. Additionally, we propose dynamic element matching (DEM) for the thermometer-coded capacitor array. The ADC is fabricated using a 0.18 μm CMOS process in an area of 0.26 mm2. Consuming 4.1 μW, the ADC achieves a signal-to-noise and distortion ratio (SNDR) of 66.5 dB and a spurious-free dynamic range (SFDR) of 79.1 dB. The figure-of-merit (FoM) of the ADC is 11.8 fJ/conversion-step.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3