Effect of a Cu-Ferrite Catalyzed DPF on the Ultrafine Particle Emissions from a Light-Duty Diesel Engine

Author:

Meloni Eugenio1ORCID,Rossomando Bruno1,De Falco Gianluigi2,Sirignano Mariano2,Arsie Ivan3ORCID,Palma Vincenzo1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

2. Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, P.le Tecchio 80, 80125 Napoli, Italy

3. Department of Engineering, University of Naples “Parthenope”, Centro Direzionale Isola C4, 80143 Napoli, Italy

Abstract

The emissions of diesel engines in terms of particulate matter are limited all over the world. One possible solution for reaching the target imposed by the various regulations could be the adoption of a catalytic diesel particulate filter (CDPF). Nevertheless, the effect of CDPFs on the particle size distributions (PSDs) during the regeneration process needs to be deeply investigated. Therefore, this research work is focused on a detailed PSD analysis during the active regeneration of a 30 %wt CuFe2O4 loaded CDPF at the exhaust of an L-D diesel engine to reach a more complete understanding of the filter behavior. The results of the experimental tests evidence that at the CDPF outlet, compared to a standard DPF: (i) during the start-up of the regeneration, the particle emissions are three orders of magnitude lower and remain two orders of magnitude lower for particle sizes larger than 50 nm; (ii) the PSDs measured in the time range of 200–450 s exhibit the bimodality observed during the accumulation phase, with a peak that is three orders of magnitude lower; (iii) at the end of the regeneration, the PN distribution exhibits reductions of two and three orders of magnitude for particle sizes of 5 nm and above 50 nm, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3