Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations

Author:

Zaib Aurang1ORCID,Mazhar Abdur Rehman1,Aziz Shahid2ORCID,Talha Tariq1ORCID,Jung Dong-Won3ORCID

Affiliation:

1. College of Electrical & Mechanical Engineering, National University of Sciences & Technology, Islamabad 47301, Pakistan

2. Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea

3. Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea

Abstract

The significance of latent heat thermal energy storage is more substantial when compared to sensible energy storage due to its higher energy storage capability. In this paper, heat transfer enhancement techniques for melting (charging) and solidification (discharging) by using external fins and internal–external fins for a phase change material (PCM) in duplex and triplex tube heat exchangers (DTHX and TTHX) are investigated numerically. A two-dimensional analysis is carried out using ANSYS Fluent for various configurations. Moreover, the effect of different critical parameters, number of fins, fin length, fin thickness, and the heat exchanger tube material are evaluated in terms of the total time of complete phase change of the PCM. Four cases are investigated; cases 1 and 2 are based upon a DTHX while cases 3 and 4 are TTHXs. By considering case 1 as a reference case, it is found that case 2 and case 3 reduce the total melting time by 48.76% and 90.12%, respectively. Case 4 achieves the shortest time for complete melting of the PCM, and the total melting time is decreased by 92%. Solidification behaviour for all four cases is also investigated. The novel configurations increase (doubled) the supply of heat transfer fluid (HTF) while at the same time significantly enhance the melting/solidification characteristics for all the cases without disrupting the convectional currents during phase change of the PCM. Tube materials with different thermophysical properties are also investigated with the heat transfer rate and melting time significantly improved with a high thermal diffusivity material. Moreover, the heat transfer is found to increase with fin length and fin thickness.

Funder

Jeju National University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3