Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation

Author:

Vuksanović Marija M.1ORCID,Milošević Milena2,Dimitrijević Ivan3,Milentijević Gordana4,Babincev Ljiljana4ORCID,Gržetić Jelena5ORCID,Marinković Aleksandar3,Milosavljević Milutin4

Affiliation:

1. University of Belgrade, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia

2. University of Belgrade, Institute of Chemistry, Technology, and Metallurgy—National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia

3. University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

4. University of Priština, Faculty of Technical Science, Knjaza Miloša 7, 38220 Kosovska Mitrovica, Serbia

5. Military Technical Institute, Ratka Resanovća 1, 11000 Belgrade, Serbia

Abstract

The increase in waste polymer recycling has helped in promoting sustainability, and together with the use of renewable raw materials, it has become a widespread concept with positive effects on both the economy and ecology. Accordingly, the aim of this study was the synthesis of “green” plasticizers, marked as LA/PG/PET/EG/LA, formed from waste poly(ethylene terephthalate) (PET) and bio-based platform chemicals propylene glycol (PG) and levulinic acid (LA). The structure of the obtained plasticizers was complex, as confirmed by results from nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) analysis. The LA/PG/PET/EG/LA plasticizers and waste poly(vinyl chloride) (PVC) were used in an optimized technology for PVC re-granulate production. The hardness of the PVC-based material with “green” plasticizers, in comparison to commercial plasticizer dioctyl terephthalate (DOTP), increased by 11.3%, while migration decreased. An improved material homogeneity and wettability of the fibers by the matrix were observed using SEM analysis of the material’s fracture surface, with a higher efficiency of intermolecular interactions leading to better mechanical performances of the newly designed materials. Thus, LA/PG/PET/EG/LA are unique materials with good compounding and plasticizing potential for PVC, as revealed by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). In that manner, the use of bio-renewable resources and recycled polymers will contribute to diminishing waste polymer generation, contributing to a lower carbon footprint.

Funder

Ministry of science, technology and innovation of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3