Abstract
The plasticizers used in this study were synthesized from renewable raw materials using succinic acid, oleic acid, and propylene glycol. Four environmentally friendly plasticizer samples were obtained; their chemical structures and compositions were confirmed by gas chromatography (GC) and infrared spectroscopy (FT–IR) analyses, and their physicochemical properties and thermal stability (TGA analysis) were investigated. The obtained ester mixtures were used as poly(vinyl chloride) (PVC) plasticizers and their plasticization efficiency was determined in comparison to traditional, commercially available phthalate plasticizers, such as DEHP (di(2-ethylhexyl phthalate) and DINP (diisononyl phthalate). Mechanical properties and migration resistance were determined for soft PVC with the use of three concentrations of plasticizers (40 PHR, 50 PHR, and 60 PHR). It was observed that the obtained plasticizers exhibited the same plasticization efficiency and were characterized with good mechanical and physical properties in comparison to commercial plasticizers. The tensile strength was approx. 19 MPa, while the elongation at break was approx. 250% for all tested plasticizers at a concentration of 50 PHR. Furthermore, plasticizer migration studies showed that the synthesized plasticizers had excellent resistance to plasticizer leaching. The best migration test result obtained was 70% lower than that for DEHP or DINP. The ester mixture that was found to be the most favorable plasticizer was characterized by good thermal and thermo-oxidative stability (5% weight loss temperature: 227.8 °C in air and 261.1 °C in nitrogen). The results of the research clearly indicate that the synthesized esters can provide a green alternative to toxic phthalate plasticizers.
Funder
Silesian University of Technology
Ministry of Education and Science of Poland
Subject
Polymers and Plastics,General Chemistry
Reference77 articles.
1. Plasticizers;Godwin,2017
2. Plasticizers;Cadogan,2012
3. Chemical Economics Handbookhttps://ihsmarkit.com/products/plasticizers-chemical-economics-handbook.html
4. Synthesis of a bio-based plasticizer from oleic acid and its evaluation in PVC formulations
5. Evonikhttps://corporate.evonik.com/en/products/our-applications/plasticizers-123831.html
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献