Architectural Framework for Exploring Adaptive Human-Machine Teaming Options in Simulated Dynamic Environments

Author:

Madni Azad,Madni CarlaORCID

Abstract

With the growing complexity of environments in which systems are expected to operate, adaptive human-machine teaming (HMT) has emerged as a key area of research. While human teams have been extensively studied in the psychological and training literature, and agent teams have been investigated in the artificial intelligence research community, the commitment to research in HMT is relatively new and fueled by several technological advances such as electrophysiological sensors, cognitive modeling, machine learning, and adaptive/adaptable human-machine systems. This paper presents an architectural framework for investigating HMT options in various simulated operational contexts including responding to systemic failures and external disruptions. The paper specifically discusses new and novel roles for machines made possible by new technology and offers key insights into adaptive human-machine teams. Landed aircraft perimeter security is used as an illustrative example of an adaptive cyber-physical-human system (CPHS). This example is used to illuminate the use of the HMT framework in identifying the different human and machine roles involved in this scenario. The framework is domain-independent and can be applied to both defense and civilian adaptive HMT. The paper concludes with recommendations for advancing the state-of-the-art in HMT.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference41 articles.

1. Integrating humans with software and systems: Technical challenges and a research agenda

2. Integrating Humans with and within Software and Systems: Challenges and Opportunities;Madni;CrossTalk J. Def. Softw. Eng.,2011

3. Towards affordably adaptable and effective systems

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3