Towards a Cognition-Based Framework Describing Interdisciplinary Expert Team Processes for Cognitive Robotics in Industry 5.0 Technologies

Author:

Morgenstern Tina1ORCID,Klichowicz Anja2ORCID,Bengler Philip3,Todtermuschke Marcel4,Bocklisch Franziska14ORCID

Affiliation:

1. Research Group Materials and Surface Engineering/Human-Cyber-Physical Systems, Institute of Material Science and Engineering, Chemnitz University of Technology, 09111 Chemnitz, Germany

2. Independent Researcher, 02625 Bautzen, Germany

3. Independent Researcher, 93051 Regensburg, Germany

4. Research Group Cognitive Teaming, Fraunhofer Institute for Machine Tools and Forming Technology, 09126 Chemnitz, Germany

Abstract

With the evolution of traditional production towards smart manufacturing, humans and machines interact dynamically to handle complex production systems in semi-automated environments when full automation is not possible. To avoid undesirable side effects, and to exploit the full performance potential of experts, it is crucial to consider the human perspective when developing new technologies. Specifically, human sub-tasks during machine operation must be described to gain insights into cognitive processes. This research proposes a cognition-based framework by integrating a number of known psychological concepts. The focus is on the description of cognitive (team) processes in the resolution of anomalies within a manufacturing process with interdisciplinary experts working together. An observational eye tracking study with retrospective think-aloud interviews (N = 3) provides empirical evidence for all cognitive processes proposed in the framework, such as regular process monitoring and—in case of a detected anomaly—diagnosis, problem solving, and resolution. Moreover, the role of situation awareness, individual expertise and (cognitive) team processes is analyzed and described. Further, implications regarding a human-centered development of future production systems are discussed. The present research provides a starting point for understanding and supporting cognitive (team) processes during intelligent manufacturing that will dominate the production landscape within Industry 5.0.

Funder

Fraunhofer

Chemnitz University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3