An Innovative Acoustic Rain Gauge Based on Convolutional Neural Networks

Author:

Avanzato RobertaORCID,Beritelli FrancescoORCID

Abstract

An accurate estimate of rainfall levels is fundamental in numerous application scenarios: weather forecasting, climate models, design of hydraulic structures, precision agriculture, etc. An accurate estimate becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. Unfortunately, to date, traditional techniques for estimating rainfall levels present numerous critical issues. The algorithm applies the Convolution Neural Network (CNN) directly to the audio signal, using 3 s sliding windows with an offset of only 100 milliseconds. Therefore, by using low cost and low power hardware, the proposed algorithm allows implementing critical high rainfall event alerting mechanisms with short response times and low estimation errors. More specifically, this paper proposes a new approach to rainfall estimation based on the classification of different acoustic timbres that rain produces at different intensities and on CNN. The results obtained on seven classes ranging from “No rain” to “Cloudburst” indicate an average accuracy of 75%, which rises to 93% if the misclassifications of the adjacent classes are not considered. Some application contexts concern smart cities for which the integration of an audio sensor inside the luminaire of a street lamp is foreseen, precision agriculture, as well as highway safety, by minimizing the risks of aquaplaning.

Publisher

MDPI AG

Subject

Information Systems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating rainfall intensity based on surveillance audio and deep-learning;Environmental Science and Ecotechnology;2024-11

2. Rainfall Observation Leveraging Raindrop Sounds Acquired Using Waterproof Enclosure: Exploring Optimal Length of Sounds for Frequency Analysis;Sensors;2024-07-01

3. Towards High Resolution Weather Monitoring With Sound Data;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Visualization of Rainfall Classification using Rain Gauge based on Website;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

5. Evaluating weather impact on vehicles: a systematic review of perceived precipitation dynamics and testing methodologies;Engineering Research Express;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3