Affiliation:
1. Department of Civil and Environmental Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
2. Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milano, Italy
3. Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Abstract
This paper proposes a novel method to estimate rainfall intensity by analyzing the sound of raindrops. An innovative device for collecting acoustic data was designed, capable of blocking ambient noise in rainy environments. The device was deployed in real rainfall conditions during both the monsoon season and non-monsoon season to record raindrop sounds. The collected raindrop sounds were divided into 1 s, 10 s, and 1 min intervals, and the performance of rainfall intensity estimation for each segment length was compared. First, the rainfall occurrence was determined based on four extracted frequency domain features (average of dB, frequency-weighted average of dB, standard deviation of dB, and highest frequency), followed by a quantitative estimation of the rainfall intensity for the periods in which rainfall occurred. The results indicated that the best estimation performance was achieved when using 10 s segments, corresponding to the following metrics: accuracy: 0.909, false alarm ratio: 0.099, critical success index: 0.753, precision: 0.901, recall: 0.821, and F1 score: 0.859 for rainfall occurrence classification; and root mean square error: 1.675 mm/h, R2: 0.798, and mean absolute error: 0.493 mm/h for quantitative rainfall intensity estimation. The proposed small and lightweight device is convenient to install and manage and is remarkably cost-effective compared with traditional rainfall observation equipment. Additionally, this compact rainfall acoustic collection device can facilitate the collection of detailed rainfall information over vast areas.
Funder
National Research Foundation of Korea
Korea Meteorological Administration Research and Development Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献