Facile Synthesis of Ni-MgO/CNT Nanocomposite for Hydrogen Evolution Reaction

Author:

Mohana Panneerselvam1ORCID,Isacfranklin Melkiyur1,Yuvakkumar Rathinam1,Ravi Ganesan12,Kungumadevi Lakshmanan3ORCID,Arunmetha Sundaramoorthy4,Han Jun Hyun5,Hong Sun Ig5ORCID

Affiliation:

1. Department of Physics, Alagappa University, Karaikudi 630003, India

2. Department of Physics, Chandigarh University, Mohali 140413, India

3. Department of Physics, Mother Terasa Women’s University, Kodaikanal 624101, India

4. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur 522502, India

5. Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

In this study, the pristine MgO, MgO/CNT and Ni-MgO/CNT nanocomposites were processed using the impregnation and chemical vapor deposition methods and analyzed for hydrogen evolution reaction (HER) using the electrochemical water splitting process. Furthermore, the effect of nickel on the deposited carbon was systematically elaborated in this study. The highly conductive carbon nanotubes (CNTs) deposited on the metal surface of the Ni-MgO nanocomposite heterostructure provides a robust stability and superior electrocatalytic activity. The optimized Ni-MgO/CNT nanocomposite exhibited hierarchical, helical-shaped carbon nanotubes adorned on the surface of the Ni-MgO flakes, forming a hybrid metal–carbon network structure. The catalytic HER was carried out in a 1M alkaline KOH electrolyte, and the optimized Ni-MgO/CNT nanocomposite achieved a low (117 mV) overpotential value (ɳ) at 10 mA cm−2 and needed a low (116 mV/dec) Tafel value, denotes the Volmer–Heyrovsky pathway. Also, the high electrochemical active surface area (ECSA) value of the Ni-MgO/CNT nanocomposite attained 515 cm2, which is favorable for the generation of abundant electroactive species, and the prepared electrocatalyst durability was also performed using a chronoamperometry test for the prolonged duration of 20 h at 10 mA cm−2 and exhibited good stability, with a 72% retention. Hence, the obtained results demonstrate that the optimized Ni-MgO/CNT nanocomposite is a highly active and cost-effective electrocatalyst for hydrogen energy production.

Funder

UGC-SAP

DST-FIST

DST-PURSE

RUSA

National Research Foundation of Korea

Publisher

MDPI AG

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3