Influence of Power Fluctuation on Ni-Based Electrode Degradation and Hydrogen Evolution Reaction Performance in Alkaline Water Splitting: Probing the Effect of Renewable Energy on Water Electrolysis

Author:

Liu Congying1,Lin Bing1,Zhang Hailong1,Wang Yingying2,Wang Hangzhou3,Tang Junlei13ORCID,Zou Caineng1

Affiliation:

1. School of Chemical and Chemical Engineering & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China

2. Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China

3. CNPC Shenzhen New Energy Research Institute Co., Ltd., Shenzhen 518000, China

Abstract

The combination of water electrolysis and renewable energy to produce hydrogen is a promising way to solve the climate and energy crisis. However, the fluctuating characteristics of renewable energy not only present a significant challenge to the use of water electrolysis electrodes, but also limit the development of the hydrogen production industry. In this study, the effects of three different types of waveforms (square, step, and triangle, which were used to simulate the power input of renewable energy) on the electrochemical catalysis behavior of Ni plate cathodes for HER was investigated. During the test, the HER performance of the Ni cathode increased at first and then slightly decreased. The fluctuating power led to the degradation of the Ni cathode surface, which enhanced the catalysis effect by increasing the catalytic area and the active sites. However, prolonged operation under power fluctuations could have damaged the morphology of the electrode surface and the substances comprising this surface, potentially resulting in a decline in catalytic efficiency. In addition, the electrochemical catalysis behavior of the prepared FeNiMo-LDH@NiMo/SS cathode when subjected to square-wave potential with different fluctuation amplitudes was also extensively studied. A larger amplitude of fluctuating power led to a change in the overpotential and stability of the LDH electrode, which accelerated the degradation of the cathode. This research provides a technological basis for the coupling of water electrolysis and fluctuating renewable energy and thus offers assistance to the development of the “green hydrogen” industry.

Funder

the Scientific and technological innovation project of Laoshan Lab

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3