Composite Laminate Delamination Detection Using Transient Thermal Conduction Profiles and Machine Learning Based Data Analysis

Author:

Gillespie David I.ORCID,Hamilton Andrew W.ORCID,Atkinson Robert C.ORCID,Bellekens XavierORCID,Michie CraigORCID,Andonovic IvanORCID,Tachtatzis ChristosORCID

Abstract

Delaminations within aerospace composites are of particular concern, presenting within composite laminate structures without visible surface indications. Transmission based thermography techniques using contact temperature sensors and surface mounted heat sources are able to detect reductions in thermal conductivity and in turn impact damage and large disbonds can be detected. However delaminations between Carbon Fibre Reinforced Polymer (CFRP) plies are not immediately discoverable using the technique. The use of transient thermal conduction profiles induced from zonal heating of a CFRP laminate to ascertain inter-laminate differences has been demonstrated and the paper builds on this method further by investigating the impact of inter laminate inclusions, in the form of delaminations, to the transient thermal conduction profile of multi-ply bi-axial CFRP laminates. Results demonstrate that as the distance between centre of the heat source and delamination increase, whilst maintaining the delamination within the heated area, the resultant transient thermal conduction profile is measurably different to that of a homogeneous region at the same distance. The method utilises a supervised Support Vector Classification (SVC) algorithm to detect delaminations using temperature data from either the edge of the defect or the centre during a 140 s ramped heating period to 80 °C. An F1 score in the classification of delaminations or no delamination at an overall accuracy of over 99% in both training and with test data separate from the training process has been achieved using data points effected by transient thermal conduction due to structural dissipation at 56.25 mm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3