Abstract
We demonstrated a new method for temperature measurement inside a fiber ring laser (FRL) cavity. Different from traditional FRL temperature sensing system which need additional filter working as a sensor, a micro-fiber coupler (MFC) was designed as a beam splitter, filter, and temperature sensor. In addition, isopropanol, a liquid with very high photothermal coefficient, is selectively filled in the MFC in order to improve the sensitivity of the system on temperature. In the dynamic range of 20–40 °C, we obtained a good temperature sensitivity of −1.29 nm/°C, with linear fitting up to 0.998. Benefiting from the advantages of laser sensing, the acquired laser has a 3 – dB bandwidth of less than 0.2 nm and a signal-to-noise ratio (SNR) of up to 40 dB. The proposed sensor has a low cost and high sensitivity, which is expected to be used in biomedical health detection, real-time monitoring of ocean temperature, and other application scenarios.
Funder
startup fund from Southern University of Science and Technology
Shenzhen government
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献