Abstract
In this study, we report a perovskite solar cell (PSC) can be benefited from the high quality of inorganic nickel oxide (NiOx) as a hole transport layer (HTL) film fabricated from the physical vapor deposition (PVD) process. The power conversion efficiency (PCE) of PSC is found to depend on the thickness of NiOx HTL. The NiOx thickness is optimized via quantitative investigation of the structure, optical and electrical properties. With an active area of 11.25 cm2, a PSC module (25 cm2) with a PCE of 15.1% is demonstrated, while statistically averaged PCE = 18.30% with an open voltage (Voc) 1.05 V, short-circuit current density (Jsc) 23.89 mA/cm2, and fill factor (FF) 72.87% can be achieved from 36 devices with smaller active areas of 0.16 cm2. After the stability test at 40% relative humidity (RH) and 25 °C for 1200 h, the highest performance NiOx-based PSC is shown to be about 1.2–1.8 times superior to PEDOT:PSS organic HTL based PSC at the same environment.
Funder
Ministry of Science and Technology, Taiwan
Chang Gung Memorial Hospital, Linkou, Taiwan
City University of Hong Kong
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献