Enhancing Surface Modification and Carrier Extraction in Inverted Perovskite Solar Cells via Self-Assembled Monolayers

Author:

Kim Gisung12ORCID,Kim Hyojung3ORCID,Kim Mijoung2ORCID,Sin Jaegwan2ORCID,Kim Moonhoe2ORCID,Kim Jaeho2ORCID,Zhou Haoran4,Kang Sung Ho4ORCID,Oh Hye Min2,Yang JungYup23ORCID

Affiliation:

1. Korea Institute of Fusion Energy (KFE), Daejeon 34133, Republic of Korea

2. Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea

3. The Institute of Basic Science, Kunsan National University, Gunsan 54150, Republic of Korea

4. Renewable Energy Materials Laboratory (REML), Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea

Abstract

Perovskite solar cells (PSCs) have been significantly improved by utilizing an inorganic hole-transporting layer (HTL), such as nickel oxide. Despite the promising properties, there are still limitations due to defects. Recently, research on self-assembled monolayers (SAMs) is being actively conducted, which shows promise in reducing defects and enhancing device performance. In this study, we successfully engineered a p-i-n perovskite solar cell structure utilizing HC-A1 and HC-A4 molecules. These SAM molecules were found to enhance the grain morphology and uniformity of the perovskite film, which are critical factors in determining optical properties and device performance. Notably, HC-A4 demonstrated superior performance due to its distinct hydrophilic properties with a contact angle of 50.3°, attributable to its unique functional groups. Overall, the HC-A4-applied film exhibited efficient carrier extraction properties, attaining a carrier lifetime of 117.33 ns. Furthermore, HC-A4 contributed to superior device performance, achieving the highest device efficiency of 20% and demonstrating outstanding thermal stability over 300 h.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3