Abstract
The Songnen Plain (SNP) is an important grain production base, and is designated as an ecological red-line as a protected area in China. Natural ecosystems such as the ecological protection barrier play an important role in maintaining the productivity and sustainability of farmland. Carbon use efficiency (CUE), defined as the ratio of net primary productivity (NPP) to gross primary productivity (GPP), represents the ecosystem capacity of transferring carbon from the atmosphere to terrestrial biomass. The understanding of the CUE of natural ecosystems in protected farmland areas is vital to predicting the impact of global change and human disturbances on carbon budgets and evaluating ecosystem functions. To date, the changes in CUE at different time scales and their relationships with climatic factors have yet to be fully understood. CUE and the response to land surface phenology are also deserving attention. In this study, variations in ecosystem CUE in the SNP during 2001–2015 were investigated using Moderate-Resolution Imaging Spectroradiometer (MODIS) GPP and NPP data products estimated using the Carnegie-Ames-Stanford approach (CASA) model. The relationships between CUE and phenological and climate factors were explored. The results showed that ecosystem CUE fluctuated over time in the SNP. The lowest and highest CUE values mainly occurred in May and October, respectively. At seasonal scale, average CUE followed a descending order of Autumn > Summer > Spring. The CUE of mixed forest was greater than that of other ecosystems at both monthly and seasonal scales. Land surface phenology plays an important role in the regulation of CUE. The earlier start (SOS), the later end (EOS) and longer length (LOS) of the growing season would contribute increasing of CUE. Precipitation and temperature affected CUE positively in most areas of the SNP. These findings help explain the CUE of natural ecosystems in the protected farmland areas and improve our understanding of ecosystem carbon allocation dynamics in temperate semi-humid to semi-arid transitional region under climate and phenological fluctuations.
Subject
General Earth and Planetary Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献